Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy.

نویسندگان

  • Yasufumi Takahashi
  • Andrew I Shevchuk
  • Pavel Novak
  • Babak Babakinejad
  • Julie Macpherson
  • Patrick R Unwin
  • Hitoshi Shiku
  • Julia Gorelik
  • David Klenerman
  • Yuri E Korchev
  • Tomokazu Matsue
چکیده

We describe voltage-switching mode scanning electrochemical microscopy (VSM-SECM), in which a single SECM tip electrode was used to acquire high-quality topographical and electrochemical images of living cells simultaneously. This was achieved by switching the applied voltage so as to change the faradaic current from a hindered diffusion feedback signal (for distance control and topographical imaging) to the electrochemical flux measurement of interest. This imaging method is robust, and a single nanoscale SECM electrode, which is simple to produce, is used for both topography and activity measurements. In order to minimize the delay at voltage switching, we used pyrolytic carbon nanoelectrodes with 6.5-100 nm radii that rapidly reached a steady-state current, typically in less than 20 ms for the largest electrodes and faster for smaller electrodes. In addition, these carbon nanoelectrodes are suitable for convoluted cell topography imaging because the RG value (ratio of overall probe diameter to active electrode diameter) is typically in the range of 1.5-3.0. We first evaluated the resolution of constant-current mode topography imaging using carbon nanoelectrodes. Next, we performed VSM-SECM measurements to visualize membrane proteins on A431 cells and to detect neurotransmitters from a PC12 cells. We also combined VSM-SECM with surface confocal microscopy to allow simultaneous fluorescence and topographical imaging. VSM-SECM opens up new opportunities in nanoscale chemical mapping at interfaces, and should find wide application in the physical and biological sciences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fixation and Permeabilization Approaches for Scanning Electrochemical Microscopy of Living Cells.

Scanning electrochemical microscopy (SECM) has been widely used for the electrochemical imaging of dynamic topographical and metabolic changes in alive adherent mammalian cells. However, extracting intracellular information by SECM is challenging, since it requires redox species to travel in and out the lipid cell membrane. Herein, we present cell fixation and permeabilization approaches as an ...

متن کامل

Interrogation of living cells using alternating current scanning electrochemical microscopy (AC-SECM).

In this paper we present the application of alternating current scanning electrochemical microscopy (AC-SECM) to the study of living cells. Commercial AFM instrumentation was modified to allow for performing robust AC-SECM measurements. Constant height AC imaging of the Cos-7 cells, performed directly in cell culture medium without the addition of a redox mediator, provided topographical inform...

متن کامل

Combined scanning electrochemical/optical microscopy with shear force and current feedback.

A technique that combines scanning electrochemical microscopy (SECM) and scanning optical microscopy (OM) was developed. Simultaneous scanning electrochemical/optical microscopy (SECM/OM) was performed by a special probe tip, which consists of an optical fiber core for light passage, surrounded by a gold ring electrode, and an outermost electrophoretic insulating sheath, with the tip attached t...

متن کامل

Local imaging of an electrochemical active/inactive region on a conductive carbon surface by using scanning electrochemical microscopy.

We demonstrated the imaging of local electron transfer-rate differences on a flat conductive carbon substrate, attributed to only surface functional groups, by using a scanning electrochemical microscopy (SECM) technique. These differences were clearly imaged by using a redox mediator with surface state sensitive electron transfer rates, even if the conductivity of each imaging area were almost...

متن کامل

Nanoscale cation motion in TaO(x), HfO(x) and TiO(x) memristive systems.

A detailed understanding of the resistive switching mechanisms that operate in redox-based resistive random-access memories (ReRAM) is key to controlling these memristive devices and formulating appropriate design rules. Based on distinct fundamental switching mechanisms, two types of ReRAM have emerged: electrochemical metallization memories, in which the mobile species is thought to be metal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 29  شماره 

صفحات  -

تاریخ انتشار 2012